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AROD REAL TIE?, DATA E X T W O L A T I O N  

by J, C, Sander& 5: J, T, Hannon 

I, INTRODUCTION 

MOD is a Space vehicle tracking s y s t e m  in which tracking data are 

extracted from 0-w, radio transmissions between the vehicle and sets of 

four ground-basad transponders, Ideally, continuous communications are 

required between the vehicle and each of a t  least three transponders, 

I n  addition t o  improdng tracking accuracy, the fourth transponder 

pennits sequential switching of individual transponders between sets 

while malntalning Comnxnications with three transponders a t  a l l  times, 

I n  practice, radio transmissions are performed in the presence of 

sources of interference which may, and often do, result an intelc 

ruption of c d c a t i o n s  for a iinite period of time, 

The receivers in both the vehicle and the transponders are phase- 

locked, For the purposes of this report, phase-locked receivers may be 

characterized by two features, namely, acquisition t h e  and response t h e ,  

The acquisition time, Tac, of a phase-locked receiver is dependent 

upon maqp factors, The most important of these factors are contained in 

the  proportionality 

(initial error) (error rate) 
T "  

(loop bandwidth) (signal strength) 

A phase-locked receiver exhibits limited response under two conditions, 
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Suppose a step change is made i n  the phase o f t h e  input signal, The 

automatic phase control (APC) loop integrates t h e  error step so that  

af'ter some time Td the VCO phase is approximately equal t o  that of the 

incoming signal, 

signal with zero error rate, and the signal is suddenly removed, 

I s  also a step change in the error, which is integrated as in the 

prarlous case, so that a change in the VCO phase Will be observed only 

after a finite delay, If the signal is reapplied immediately after it 

ia removed, t h e  reacquisition t h e  should be short since the numerator of 

(1) approache8 zero as the period of signal interruption approaches zero, 

For a receiver with given loop bandwidth the reacquisition time, 

Suppose the receiver is phase-locked t o  an incoming 

This 

Trac, after a signal interruption of duration Ti is determined by 

Ti bas / d t  
U. T 

rac I PSI 

where gS = signal phase, 

d$l / a t  = error rate, 

I P  I = signal s t rength ,  
S 

S 

To obtain adequate sensi t ivi tythe AROD receivers use narrow band- 

widths so t h a t  one term i n  the denominator of (1) is always small, 

Consider the relation of t h e  variables in (2) t o  the distance, 8,  

between t h e  vehicle and a transponder, 

t o  large distances, as do low error rates, 

tend t o  compensate, for large s, 

Small signal strengths correspond 

These two variables thus 

A high probability of signal interruption 
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COrre8pOndrr t o  m 8 -  8trength8, a8 do longer average duratlom of 

~errpPtiOn, Hence, for large 8 ,  the probability of signal krterrugkion 

is €pat ,  and 8 ignd  trterruptiona will p b a b 4  be accaplpanisd by mla- 

tirely large reacquisition times, 

Large 8ignal rtrengtb and large e m r  rates correspolhd t o  amall 

dl8teoceb, Hence, these two tennu colnpeosate for  omall, as well aa 

large, diatamea, The probability of interruption is midmum for 

m b h t a  distance, ami the average duration of interruptionrr should also 

be -* 

We may conclude that there a d s t 8  a porrsibillff that  a s&pal Inter- 

ruption pap occpllp dUrirrg - part of t h e  t r a j e c t o q  In which the vehicle 

is "rirriblew t o  the transponder, Further, the probability of inter  

+iOn is grsate6t when the  vehicle Is near the horlzon,and these Intarc 

nrptlonm will be aecmpded & the m d m n n  reacqulsltlon times, 

h e  colrtiwws data are required, a technique for reduciag the 

data los t  due t o  slgnal Mef iupt ions  is ddrable,  Thie report present8 

the pelidnary imvmtigatlon of a real t b  data extrapolation technique 

designed to  midmlze reacqubition time followlag a 8- trterruption, 

as well as t o  "replace- the  data lost d- the IderrrtptiOn, 



a < x I b ,  

From the internal [a,b] select an ordered subset of equally spaced 
n 

points {Xi} i-o such that 

11, FIKt!l!E DIFFERENCX OPERATORS, I”EWOUTION, AND EXTBAPOUTION 

A brief lntroductlon t o  f in i te  differences, and f in i t e  dlfference 

operators I s  followed by a short development, of t h e  Gregory-Newton 

Interpolation formulas, of which one is suitable for use in extrapolation, 

A, Finite Difference -a tors: A ftmction f of a variable x is 

defined t o  be an ordered collection of number pairs IC, f(x), of which no 

two have the same first term, 

A collection (of points, functions, etc,) is referred t o  as a set  

An ordered set l a  a collection I n  which (of points, functions, etc,), 

t h e  elements are arranged according t o  some rule, hence, t o  order a set, 

is t o  arrange its elements according t o  s a w  rule, Let H be a se t  of 

poI11t.8, and let N be a oat of poirrts such that every point of N is 

ab0 a pokrt of M, lif H contabs one or more points not contained 

An N, then N is sald t o  be a subset of H, 

Let H be a aet of pints, and l e t  f be a function, If for every 

X in the set  H, there d s t s  a real  number y such that y = f(x), then 

the function f is said t o  be defined on the set  M, 

The interval [a,b] is the set  of a l l  points x such that 



where for every noxl-negative integer i , such that 0 5 i < n,  

x - ~ = h ,  
i + l  i 

Equation (3) may also be Written %+1 = xi + h, Repeated application of 

this relation and/or indudion Jnelda 

x i+2 = x  i+l + h =  xi,+ + h = X i + 2 h '  

+ u = y o =  xi* , x = x  + h =  xi*2 i+k I*-1 

x =xo+nh. n ( 5 )  

only bounded sets of the form (2) w i l l  be considered, for  if the set 

b unbounded, there exists a t  least poinGwise knowledge of the function 

for  a l l  x; and there is no need f o r  extrapolation, 
n 

L e t  f be a fundion deflned on the set {xi} i=o (see equation 2), 

then fo r  every x 

F'urther, there d a t s  the set  { yi} iq , 
there d s t s  a real number yi such that yi = f(Xi), 

n i 



? 

e 

Note that thoro eXiets a one-to-one correspondence batweten the term of 

For each m d m r  x {%}L and the terPr, of {yi} y- 
{xi} F- them eAst6 a member of the set { yi} iw such that yl = f (9) . 
Hence, there exists a one-to-one correspondence between the Bfembecb of 

the sets; however, ob6orve that the set (si} tq b not ordered, 

The forward difference operator n is  deriasd by the relation 

of the set 
j 

for all xi such that f(x) I 8  defined on 8- set co&ahbg 4. 
relation, (4) 

The 

and the relation, fhxan ( 6 )  s 



and for c a constant 

B - t d  applhatian of (9) and/or indtrctian a l d a  
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Hence, for az&y two non-negative Integers n and k 

Quatiom (10) and (11) are the d e f b h g  relations for a linear operator, 

Benee the forward difference operator A l a  a linear uperator, *her, 

equations (U) and (12) assign an additire l a w  of cupomnts t o  the  ope- 

ator A, 

The effect of the operator A upon a se t  of ordered number pabs 

{xi, y5} El b shown in Table 1, Note that successive dlfferencerr 

may be colnppted fPam arq starting poIp[t, The me of the word "forward" 

in the deacrlptire t i t le  of the operator A i8 a result of the fact that  

only successive differences m y  be caPPpclted wlth A. 

Let  f bea 

shif't aperator E 

i n c r d ,  hence 

fbnctlon deiined on the sek {xi} rq , Deflne the 

to be that  operator which advances yi = f(xi) by one 

fo r  c a conatant 
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and 

= Yi* 

From (IS), (16) and (17) conclude that the shin operator E is a linear 

operator with an additive law of atpenents, 

Observe that there edsts an inverse shirt operator r1 such that 

EO1 (mi) = si. (18) 

Substitution of (u+) into (18) yields  

Hake the change of notation 

4 u t i o n ~  (14) and (20) are 

(19) 

j = i+l, hence, from (19) write 

(20) 

the defining relations for the forward and 

reverse shirt operators respectively, 

Consider again t h e  ordered set  of number pairs { xj, yj} ;- 
defined in equations (2), (3) and ( 6 ) .  

completely arbitrary, hence l e t  the set be reordered such that 

The ordering of the set is 

< X  < 0 0 0  < s i <  xn = b a = xo n-1-i P1+1 



where for emry 3 such that o < j l n  

l 

t 
and for a function y = f(x) defined on {xi} :- there exists the 

I correrrponding set 
I 
I 

1 

The prhe on y’ does not denote dlfferentiatlon with respect t o  a variable, 

bat I s  used t o  diacrlminate between the members of the set  (4) and the set 
3 1 

(23). WtiOm (21)’ (22) (23) are m-0- t o  (219 (3) a& (4) 

reepectlrely, &pation (21) ia identical In  form t o  (2)’ except that the 

reference tenn is e t h  term, Instead of the initial term, &piation (22) 

may be obtained from (3) by letting 
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Equation (23) is  a reordering of (4) where y; = f(x ) is the reference 

instead of y = f(x ), 
n 

0 0 

Given the set of ordered number pairs (. , y' }" , define the 
j j j- 

backward difference operator 6 such t h a t  

It is readily shown that the operator 8 is a linear operator having 

an additive law of exponents, 

successive Uferences backward from f (x  ). n 
1 can be formed using the operator 8 on a f in i te  data set,  where A 

would be replaced with 8 and the remainder of the table being esse* 

t i a l l y  unchanged. 'Re important difference lies in the definition of 

the terms, since in the table formed by 8 , the f i rs t  differences 

Observe that the operator 8 form only 

A table similar t o  Table 

place the f ina l  differences of the set { f(xi)} 2, a t  the begin= 

n b g  of the s e t  {f(x,) }:-, 
I n  comparing the operaticins of A and 8 on the set  {xi 

the compact notation of (9), used above may be conpUsing, hence the 

notation ( 8 )  will be used, Hence fram ( 8 )  and (23), equation (25) 



where 1 is the Identity operator, 

substitute into (26) to  obtain 

From (Ut) write f(Xi+l) = =(Xi) 9 

Fnrn (27) one may write 

E = (1%) 

where the operand ia implicit, and it is pnder&ood that without an 

operand the operator is of no significance, Froan (25) write 

8 0 1 ~ 0  for f(%j+l) t o  obtain fb*J = f(XPj) - f(x*j+l ) 

whence the symbolic eqaallty 
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B, Jntemol&&g: The genemil r e q u h m a t a  for interpolation are conmi- 

dared; horraar, e the GregorpHouton Interpolation formulaa are ddved, 

Let f be a fuactiotn defined on the interval [a,b] . Conrrider the 



Fram (17) write 

Becall frum the def- relation (3.4) for the m a t o r  E, that 

EX(%) = f(++h), then for real number r one may write 

Er f(+) = f(+*h) (35) 

for any function f(x) defined at x = *+-rho Frorp (34) d (35) obtain 

Since k 2,s an integer,ad r iS a real number, the sum ldr l a  a real 

-0 - R, 
and write (37) in the fom 
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2!  

R . .  



16 
sPppose 5 h near the end of the set {%} t- . Since h iS 

defined by the relation 

write 

Since r is a real numbew, eo also irr l-r, l e t  

r’ = lor, 

k = ~ + l ,  W l =  n=J. 

(44) 



Fro0 (48) and the definition of E-’# obtain 

(49)  and (31) write 

s -(j+rs) -(3+rS) s 
’n f(x - r h) = B y = (1- 1) 

n-j n 

Upon eqmndhg ( 5 0 )  by the binomial theorem, and letting 

s 
j + r S = R  

one obtains 

Equation (52) may be written in the more compact form 

R’ 
s (n-tm-1) ! m ,  

f ( x  -r h)  = 1 8s 0 n ’ t3  m! 
I F 0  
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Obaene fkam (45) that the two series (41) and (53) field identical 

results for t he  two orderlngs 

respectively, 

n n 
and {Xj, jq’ 

Equation (53) is the secomi of the two interpolation formulas t o  

have been derlved, and is known as the GregorpHwton backward interpolation 

fonnula, Aa indicated, this formula is used t o  interpolate between values 

near the ssrl of a data set, 

C, Extrapolation: Let f be a hction defined on the interval [a,q , 
and let [a,bJ be a subinterval of [a,=] 

ordered set of ntopber pairs { x 

such that a c b <  c, Given the 

’ } satiarykrg the conditions: 
n-j, 5 Po 

- x  = h for every positive integer j such that o <  j 5  n, 1 0 X * j  *j-1 

n 
consists of the real numbers x satis- (1) 

2, k j }  * b-j 
above, and such that  a = x  <* . .<x  < x < x = b , 

0 n-2 e l  n 

consists of the real numbers y’ such that for each 
j n 

X in the set {xbj} 
*j 

it l a  deaired t o  extend, analytically, the data set { xej, y 

d c h  is defined on the interval [a,b] into the interval b,c] . This 
process is termed extrapolation, 

The first step in extending the  data set I s  t o  find the tarm 

f(x + h) , Use the formla (53) since f(x ) l a  a t  the sold of the data 

set, Write 
n n 



successive applications of ( 5 7 )  the data set  may be apandai throqh- 

out the interval [c,d] , w i t h  an lncreaalng uncertainty in ea& succsssive 

polat 80 obtained, provided that f is defined on the interval [c,d] 



FrosD Table 1 it is evident that  many calculations are necessary for 

one ertrapolation, and that maqy edrapolations are necessary t o  show the 

trend of the deviation, To reduce labor and m r a  a computer program was 

written t o  perform the mathematical operations, 

Fortran 11 for use in the IIEI 1620 coQIptlfrer, 

The program was written in 

The program waa designed 

t o  use el- data points irom any function, take up t o  tan differencea, 

8nd make up t o  200 ertrapolations, 'Ihis program is shown in Table 2, A 

second pmpam, de8igned to use data fwm arc-taqpnt funct%ona only, was 

written t o  perfom extrapolations as well aa t o  compute the percent error of 

each extrapolated point, Table 3 shows this program, A f low diagram 

(Figure 1) i . l l . a t e s  the  sequences of the programs, 

In Forbran laagaags certain mathematical notations have mearhgs 

different from those t h q  ordinsrily ham In  mathautic8, 

variables and 8abecripts flt the Fortran notation, changes are often 

To make the  

necessary, 

on the left  hand side of the statement by the quantity on the right hand 

'phe equal sign in Fortran Utera l ly  means "replace the mnnber 

s i d e ,  Subscripted variables are noted by a parenthesis behind the 

numbers such as X ( U )  for X 

subscript , 

Note that zero can n m  be wed as a 
li 

The only variables requir- changes f o r  use in the colapntter progt?am 

were the  variables denoting the sets of diiferences, AIYl, A2Y2, 

etc,, were changed t o  D l Y ( l ) ,  MY(2), etc,, slnce t h e  symbol A iS not 



, 
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readily available on the  compater, Nutice t h a t  the difference sets were 

designed for easy adaptibillty t o  the  capapder by Omitting a l l  z-9 in 

the subscript notation, 

Input data t o  the program consists of the InLerval size between data 

points (referred t o  as H), the value of X a t  the point where the extrapo- 

lations be&, (denoted Y(l) t o  Y ( l l ) ) ,  The subscript variable is  N, and 

is set  equal t o  eleven for the first calculation, The number of the  extra- 

polation is H, 

Storage of up t o  200terms for each se t  of diiferences is mde available 

and 3a set  equal t o  zero a t  the first of the program, 

the DMENSION statement, 

h e  first part of the program (statements 1-64) consists of taking 

After each set  the ten seta of differences for the  eleven data points, 

of differences is made the result muat be checked t o  dstannine if it 

is t o  be last difference set, 

iables representing sets of differences are set equal t o  zero, 

c q u k e r  goes through this part of the program only once, 

If it is, then a l l  of the  following vslc 

The 

!be second part  of the program is the section that makes the 

extrapolations (statements 65-75). 

Y, and the corresponding value of X are calculated, 

punched on a card, 

are then advanced by one increment f o r t h e  next extrapolation, 

of M iS checked s h e  the computer Stops after 200 extrapolations, 

The values for the extrapolated point, 

The results are 

The subscript, N, and the extrapolation number, H, 

!be value 

The third section of the program (statements 76%) takes the Sets 

of differences using the extrapolated point as the laat  data Po*. 
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A s  In the f ' i rst  section a check must be made after each difference to  

dotemine the final diiference, when the laat difference ia found the 

program rerturas t o  section t w o  t o  calculate the next sxtrapolation, mas, 
sections two and three form a loop to p f o m  the 200 extrapolations, 

We o w  difference butween the fir8t and second program is  the 

second section, Ime iecond program makes the extrapolation in the sane 

manner as the firat, but after each extrapolation, the value of the arc- 

tangent at that point is coqmted and campared with the extrapolated value, 

Frau this the error 

this program using data in  incrememta of 0.1 from 6.0 to 5.0, 

compUted, Table 4 showa the output results f r o m  

These two prolgrapls have proved t o  be efficient and versatile in the 

calculation of extrapolations for the f'unctlona used, 



Iv, EzlRAPoLATIoDIs OF SEVEBAL FtmTICuS 

. 

Po test the extrapolation equation as well aa the cosqmter program, 

it was I W C e s S a r 7  t o  make extrapolations for well behaved cumw and for 

those that are not so . w e l l  behaved, Extrapolations were made of paraboUc 

runctions 

such as log tables axxi interest tables, 

functions, which are polsnolaJals, the extrapolations were exact and the 

curve may be extraplated indefinitely, 

1 and 2, 

cubic ftmctions, c3rcular rPnction~, and on tabulated data 

For tha parabolic and cublc 

’Ihia io illustrated in Figures 

The accuraq of the eoctrapolatlona of a circular function depnds on 

the significance of the data points, whlch in turn d e p d  on the 5.m- 

ment size, Pigpres 3A, ltA, and 5A show the dewlation of the extrapolated 

c h u l a r  r\nzctionS frm the autual c\vllbi for the data taken diriSrant 

&apso ‘Ihe percent error versus nmber of extrapolations a m  illustrated 

in -95 3Bs e, d 5-R far -& as9c:‘td c i l ? e * ~  FZ+”&Z, .-5ms 

6 and 7 present the percent deviation for extrapolations of tabulated 

log and intereat data, Since the data points from the interest table 

have more s&dficant rigurea than those of the log table , the deviation 

for any given nnmber of extrapolatiom uaa less, 



V, m T I O I % s  OF TBE ARGWB4l' FUNCTICOW 

To estiaate the edirapolation error for tracking data, the arc- 

tangent h c t b n ,  which l a  8 i d l a r  In form, was wed, Figure 8 shows a 

plot of the arc-tangent cumm as ased in t h b  system, The arc-tangent 

varies slowly until X approaches the croas-over point a t  the origin, 

kar this point the c u e  bewzome8 very rapid, 

made whg data 8amples don& several points on the curve, 

Bctrapolations were 

%'tu0 S&S Of ertrapolatbm were made, one with the data ssmphs 

taken at intewvals of 1.0 and the other wlth the data sampler taken a t  

hxberrals of 0,1, 

points cornrpared wlth the actual arc-tangent curve for data aa~rplee in 

iutervals of 1.0 while Figures 30A through 42A are the same type curves 

for the data samrgles taken in intervals of 0,1, piepres 9B through 42B 

are plats of the perceat error vexmu the of ertrapolatioas for 

each of the assockted curves, 

the data uaa taken and where the extrapolations started, 

polated curve ia shown for  t h a t  portion of the  graph where it does not 

lie on top of the actual curve, For the part  of the curve where the 

aro-tangent curve and the extrapolated c u m  seaa t o  be the same, 

the diifarence is 80 s m  that it cannot be shown on t h i s  c m e ,  

referring t o  the error curve, the deviation for this part of the C u r v e  C a n  

be obtained, 

F%gtm38 9A throw 29A are plots of the extrapolated 

On each curve is a notation showiDg where 

The extra- 

Referring to these curves it is evident that f o r  data ssmples 

taken at almost point, the extrapolated curve follows the arc-tangent 



very closely until it nears the origin, For data samples taken a large 

distance from the origin, the error of the extrapolations uaa less than 

18 for more than 100 extrapolations; howerer, for data taken very near 

the or ig in ,  the error in the extrapolation increased very rapidly, 

comparing Pigrrrea 1 7 A  and 3lA, it can be shown that the accuracy ia im= 

proved by taking the  data samples in mualley intervals, and for the same 

number of extrapolations t h e  accuracy is greater for the smaller data 

Increments (compare l 7 B  and 3I.B.). Coqarison of F’igures 22A and 42A 

also reveals that the accuracy is better for smaller incresnerrts, 

With actual tracking data the input s i g n a l s  will contain random 

noise which w i l l  tend t o  increase errors in the extrapolated points, 

Since there was I#) actual tracking data available, no conclusions are 

drawn as  t o  the exact resalts of nobe; however, if enough data saqbles 

are wed, the increase in the error of the extrapolations due to random 

nobe should be tolerable, 
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VI, ~ D I A G ~ W 2 a E ~  

'l%Ore are 2 types of coqnrting 8 p t w  which rpy be prred t o  perform 

the calculatlona of the srrtrapolation computer, These are the anslog 

type and the digital type, Bath of these q a t -  has several relative 

advaatages a dhad~antagea d t h  roqmct t o  the other, 

pbe a coxtrol gate uxl a buffer (or gate) 

t h e  computer is fed back through the  control gate t o  the buffer, The 

control gate, however, i a  blocked the data 8-1 input, If a loas 

of inpOt occuru, then the control gate conducts and the extrapolatloxu 

Buth sptm 

the input, The output of 

ms& 
A, syst- 

43 is a -am of an analog s m e m  which mes a series of 

differentlators t o  perform the diiforence f'unction, 

dUf6rentiator ir appli4d t o  another dlfferentlator and alao t r t o  a 

8Uming amplifier, zhis -am can incorporate as many differentiatora 

as dealred, The output of the sumnlng amplifier should produce a 

accurate value of eutkrapolation, since diiferenticrtors are wed in the 

8yutep1 rather than some method of subtracting, 

Tho output of each 

There are several problem associated with thi8 -tam, such as the  

p r o b h  of drirt ami the Inherent delay in the operational amqlliiers, 

The blggest problem is that  of the differentiator, 

probably amanable t u  solution in a laboratory emirolaent, but t he  

prospects of solutions for a apace vehicle snvironau3nt are not promising, 

These problems are 
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Another disadvantage arlses In case the signal contains nobe, 

case dlfferentlation tend8 t o  enhance the mise  while diminishing the 

In this 

There a m  p#thods by which the  extrapolations be accompllrrhed 

aigitallp-, The aystan in pieure 44 i e  a simple method of implementing the 

GregorpHewton equation, Barrlcally, thia syatepI uses a control gate, an 

a n r p ~ t u d e = d o g - t o d i g i t a l  comertar, a method of shvthg data pointrr, 

a bank of binary subtracters, and a digital  t o  analog converter, 

systmn the control gate perfoms the same function as in the analog 

I n t b i 8  

8ystem of blocking the extrapolated s i g n a l  feed-back in the presence of 

the data si@ul, The output of t he  buffer is fed through the timing 

gate t o  the analog converter, The t h h g  gate I s  controlled by t h e  

8ignala fran the t h h g  pulse generator, 

designed t o  $eld a n\rmber of ptilses proportional t o  the amplitude of 

the analog irqmt, 

counter, 

highest possible number of pulses, 

binarles for a t o t a l  of 32 pubes; in practice a t  least ten would 

pmbab4 be needed, 

The analog comertor irS 

The output of this converter is applied t o  the binarg 

The counter mmrrt consist of enough binaries t o  count the 

The v t e m  il lustrated uses five 

This number is detennined t h e  aettings in the 

analog t o  digital comerter required t o  achieve good re~olution, 80 

that a sUght change in amplitude dll be detected, 

period the binaries are reset for the next cycle, 

the  resat palee from the tw pulse generators, 

After each colurtbg 

This ia achieved by 

'Ihis f b t  part of 
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t h e  eystemn could probabv be achieved with l i t t l e  difficulty, 

The next part  o f t h e  system consists of the shirt-registers and 

binary subtracters, 

through &gate8 t o  flve, two stage, shirt-registsrs, 

shif't-register needed for each bit  in the systam, The two -puts fram 

each shirtregister are fed t o  a flve bi t  subtracter 

that the earlier sig~al &s algebraicall7 subtracted from the later one, 

The shift pulse for the regbter ia generated 

ator, 

the output of W h  is fed t o  another flve b i t  subtracter in the same 

-, 
obtaining differences, so that thla process muat be repeated as 

t h s  a8 l a  nece8sary for accurate result8, 

subtracter is really an adder-subtractor, depending on the algebraic 

8- of the two h p u t s ,  A n  &ra bit  must be carried t o  denote the 

algebraic 8-9 since the80 must be carried a l l  the way through the 

8y8tePn, 

added in the sumning amplifier, 

analog 8-1 by the digital-to-analog comertor and fed back through 

the control gate aa another sxtrapolated point, 

'Ihe output of the flve b i t  binary counter ia applied 

'5ere is one 

such a manner 

the thing pulse gener- 

The output of the eubtracter I s  applied t o  a second shift-register, 

Thirr process of shirting and subtracthg is  the method of 

It nust be noted that  the 

'Ehe outputs of each subtracter, together wlth t h e i r  8-9 are 

T h b  output is then comerted t o  an 

mere are several dieadvanfagets t o  t h b  a p t e m ,  The system would 

be very complex and would require an exact sequential t u  SyStCm, 
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Bach of the control pulses, the thing pulse, shift pulse, reset pulse, 

etc,, would hate t o  be sequenced atxi synchronized, 

the desired resolution t o  detect a small change in amplitude, many 

digital bits would be necessary, 

In order t o  have 



Fromthe results of the extrapolations of the arc-tangent data, 

it is evident that  extrapolations can be made wlth a high degree of 

accuracy along the  slawly changing portion of the  curve, Along the 

rapidly changing portion near the origin, the extrapolations deviate 

from the true data rapidly so that the accuracy ia poor af ter  three 

or four extrapolations, The extrapolation should reduce the pmba- 

b l l i t y  of loss of phaae-lock d\lring the period of signal loss, even 

i f  the signal 1088 occur8 near the  origin, 
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TABLE TNO 

FORTRAN I 1  PROGRAM FOR NEWTONS FXTRAPOLATION EQUATION 

USING TEN DIFFERENCES AND 2 0 0  EXTRAPOLATIONS 

1 OIMFNSION X!?OO), Y ( 2 0 0 ) 9  D l Y ( 2 0 0 ) r  D 2 Y ( 2 0 0 ) 9  9 3 Y ( 2 0 0 ) r  n 4 Y ( 2 0 0 ) ,  

7 M = 0  

8 DO 09 J=2 ,11  

I 1 2  PUNCH 10, D l Y ( J )  
I 
~ 1 3  DO 14 J=3 ,11  

1 4  D2Y ( J )  = D l Y  ( J 1 -D lY  ( J-1 1 

I , 15 IF(ABSF(D2Y(N))-ABSF(DlY(N)) 116,56956 

16 DO 1 7  J=3 ,11  

I 
I 1 8  DO 19 J=4,11 

19 D3Y ( J ) = D 2 Y  ( J ) - D 2 Y  ( J-1) 
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TABLE TWO (CONTINUED) 

20 I F ( A B S F ( D 3 Y ( N ) ) - A B S F ( D 2 Y ( N ) ) ) 2 1 , 5 7 r 5 7  

2 1  DO 22  J=4*11 

22 PUNCH 10, D 3 Y ( J I  

2 3  DO 2 4  J=5 ,11  

2 4  D4Y ( J =D3Y ( J 1 -D3Y ( J-1 1 

2 5  I F ( A B S F ( D 4 Y ( N ) ) - A B S F ( D 3 Y ( N ) ) ) 2 6 , 5 8 , 5 8 , 5 8  

2 6  DO 2 7  J=5 ,11  

2 7  PUNCH 1 0 9  D 4 Y ( J )  

2 8  DO 2 9  J = 6 r l l  

2 9  D5Y ( J  )=D4Y ( J )-D4Y ( J-1) 

3 0  IF(ABSF(DSY(N))-ABSF(D4Y(N)))31,59,59 

3 1  DO 3 2  J = 6 r l l  

3 2  PUNCH 10, D S Y ( J )  

3 3  DO 3 4  J=7,11 

3 4  D 6 Y ( J ) = D S Y ( J ) - D S Y ( J - l )  

' 3 5  I F ( A B S F ( D 6 Y ( N ) ) - A S S F ( 0 5 Y ( N ) ) ) 3 6 , 6 0 , 6 0  

3 6  DO 3 7  J = 7 r l l  

3 7  PUNCH 10, D 6 Y ( J )  

3 8  DO 3 9  J = 8 r l l  

3 9  D 7 Y ( J ) = D 6 Y ( J ) - D 6 Y ( J - l )  

4 0  I F ( A B S F ( D ~ Y ( N ) ) - A B S F ( D ~ Y ( N ) ) ) ~ ~ P ~ ~ * ~ ~  

41 DO 4 2  J=8,11  

4 2  PUNCH 10, D 7 Y ( J )  
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44 D8Y(J)=D7Y(J)-D7Y(J-l) 

45 I f ( A B S f ( D B Y ( N ) ) - A B S F ( D 7 Y ( N ) ) ) 4 6 r 6 2 , 6 2 * 6 2  
1 

46 DO 47 J=9rll 

47 PUNCH 109 D8Y(J) 

48 DO 49 J=10*11 

43 DO 44 J=9911 

TABLE Tw’O (CONT INUED 1 



TABLE TWO ( CONT I NUED 1 

66 F O R M A T ( 2 1 5 9 2 E 1 5 . 8 )  

7 2  X ( N + 1 )  = X ( N )  + H 

73 Y ( N + l ) =  Y ( N ) + D l Y ( N ) + D 2 Y ( N ) + D 3 Y ( N ) + D 4 Y ( N ) + 0 5 Y ( N )  

77 D2Y ( N ) = D l Y  ( N I - D l Y  ( N - 1 )  

36 
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TABLE TWO (CONTINUED) 

91 D 9 Y ( N ) = D 8 Y ( N ) - D B Y ( N - l )  

9 2  I F ( A B S F ( D ~ Y ( N ) ) - A B S F ( D ~ Y ( N ) ) ) ~ ~ ~ ~ ~ ~ ~ ~ S ~ ~  

93 DOY ( N )  =D9Y (N) -D9Y ( N - 1 )  

94 I F ( A B S F ( D O Y ( N ) ) - A B S F ( D ~ Y ( N ) ) ) ~ ~ S ~ ~ ~ ~ ~  

9 5  TYPE 96 

96 FORMAT(22HNOT ENOUGH DIFFERENCES) 

97 PAUSE 

9 8  GO TO 65 

101 TYPE 1 0 2  

102 

103 

104 

105  

106 

107 

1 0 8  

99 

FORMAT(18H100  EXTRAPOLATIONS) 

PAUSE 

GO TO 76 

TYPE 106 

FORMAT(18H200  EXTRAPOLATIONS) 

PAUSE 

GO T O  76 

STOP 

END 
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TABLE THREE 

FORTRAN I 1  PROGRAM FOR NEWTONS EXTRAPOLATION EQUATION 

FOR ARCTANGENT CURVE k I T H  ERROR CALCULATION 

1 DIMENSION X ( 2 0 0 ) 9  Y ( 2 0 0 ) r  D l Y ( 2 0 0 ) 9  D 2 Y ( 2 0 0 ) 9  D 3 Y ( 2 0 0 ) *  D 4 Y ( 2 0 0 ) 9  

1 0 5 Y ( 2 0 0 ) 9  D 6 Y ( 2 0 0 ) 9  1)7Y(2C'O), DBY(2GO)g D 9 Y ( 2 0 0 ) 9  DOY(2OO) 

2 READ 0 3 9 H 1 X ( l l )  

3 FORMAT ( 2 F l O . O )  

4 READ 0 5 9  ( Y ( J ) r J = 1 9 1 1 )  

5 F O R M A T ( 4 E 1 5 ~ 0 / 4 E l S . O / 3 F 1 5 ~ O )  

6 N = l l  

7 M = 0  

0 nn Q? ~-2:fl 

9 D l Y ( J ) = Y ( J ) - Y ( J - l I  

v Y" 

1 G  FORMAT(EZU.8) 

11 DO 1 2  J = 2 9 1 1  

1 2  PUNCH 109 D l Y ( J )  

1 3  DO 14 J=3 ,11  

1 4  

1 5  I F ( A B S F ( D 2 Y ( N ) ) - A B S F ( D l Y ( N ) ) ) 1 6 , 5 6 , 5 6  

16 DO 17 J = 3 r l l  

17 PUNCH 109 D 2 Y ( J )  

18 DO 1 9  J=4,11 

19 

D2Y ( J )  =D1Y ( J ) - D l Y  ( J-1) 

D3Y ( J )  =D2Y ( J I - D Z Y  (J-1) 



TABLE THREE (CONTINUED) 

20 I F ( A B S F ( D ~ Y ( N ) ) - A B S F ( D ~ Y ( N ) ) ) ~ ~ W ~ ? ~ ~ ?  

2 1  DO 2 2  J=4,11 

2 2  PUNCH l(i, D 3 Y ( J )  

2 3  DO 2 4  J = 5 r l l  

2 4  D4Y ( J 1 =D3Y ( J 1 -D3Y ( J-1 1 

25 I F ( A B S F ( D 4 Y ( N )  ) - A B S F ( D 3 Y ( N ) )  ) 2 6 9 5 8 9 5 8  

2 6  DO 2 7  J=5,11 

2 7  PUNCH 10, D 4 Y ( J )  

2 8  DO 2 9  J=6,11 

2 9  D 5 Y ( J ) = D 4 Y ( J ) - D 4 Y ( J - l )  

30 I F ( A B S F ( D 5 Y ( N ) ) - A B S F ( D 4 Y ( N ) ) ) 3 1 ~ 5 9 , 5 9  

- 3  nn c)? 1 - c . 1 1  
> A  V U  J L  4 - v . a ~  

3 2  PUNCH 109 0 5 y ( J )  

3 3  DO 3 4  J=?,11  

34 D 6 Y ( J ) = D 5 Y ( J ) - D 5 Y ( J - l )  

3 5  I F ( A B S F ( D 6 Y ( N ) ) - 4 a S F ( D 5 V ( N ) ) ) 3 6 , 6 u , 6 0  

3 6  DO 37  J=?,11  

37 PUNCH 10, D 6 Y ( J )  

38 DO 39  J=8,11  

3 9  D 7 Y ( J ) = D 6 Y ( J ) - D 6 Y ( J - l )  

40 I F ( A B S F ( D 7 Y ( N ) ) - A B S F ( D b Y ( N ) ) ) 4 1 , 6 1 , 6 1  

41  DO 4 2  J = 8 r l l  

42 PUNCH 10, D ? Y ( J )  



T A B L E  'IHF~EC ( C O N T I N U E D )  

47 PUNCH 109 D B Y ( J )  

4 8  00 49 J = 1 0 9 1 1  

49 D9Y ( J )  =D8Y ( J )-D.SY ( J-1) 

5 0  I F (  ABSF( 09Y ( N )  ) -ABSF(  D 8 Y  ( N )  1 )  5 1 9 6 3 9 6 3  

1 5 1  DO 5 2  J = 1 6 r l l  

5 2  PUNCH 109 D 9 Y ( J )  I 
I 

5 6  D Z Y ( N ) = O o U  

, 57 D 3 Y ( N ) = O o 0  

5 8  D 4 Y ( N ) = C o O  

5 9  0 5 Y ( N ) = O o 0  

60 D 6 Y ( N ) = O o i )  

6 1  D 7 Y ( N ) = O o O  



TABLE THREE (CONTINUED) 



A7 

88 

8 9  

9 G  

9 1  

92 

93 

94 

95 

9 6  

7 1  

9 8  

1 0 1  T Y P E  102  

1 0 2  F O R M A T (  1 R H ] O C  E X T R P P O L A T I O N S )  

l C 3  P A U S E  

1 0 4  GO T C  76  

105 T Y P F  l d 6  

1 P 6  F O R M A T ( I S H Z L J O  E X T R A P O L A T I O V S )  

107  P A U S E  

1 0 9  r.0 To 7 h  

99 S T O P  

FND 



N 

1 

2 

3 

4 

5 

I 
U 

7 

8 

9 

1 0  

11 

12 

1 3  

1 4  

15  

1 6  

1 7  
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TABLE FOirR 

COMPUTER RESULTS FOR EXTRAPOLATIONS M A D E  FROM A N  ARCTANGENT CURVF 

W I T H  DATA TAKEN FROM 6.3 TO 50'2 IN INCREMENTS OF 001 

M X ( N )  Y ( N )  ARCTAN X ERROR 

11 

1 2  

1 3  

1 4  

15  

1 6  

- 7  
I I  

18  

19 

2 0  

2 1  

22 

2 3  

2 4  

2 5  

2 6  

2 7  

28  

5O000000 0F-O 7 

4990C000.E-07 

49800000. E-0 7 

49700000.E-07 

49600000. E-O 7 

495OOOOO.F-O 7 

T ~ - ? " V " " " . ,  Z ?  

49300OOO.F-07 

j n r n n n n n  t- 

49200000.E-07 

49 100OOOoE-0 7 

49OO0OOO.E-07 

48900000. F-0 7 

4 8  8 0 0  000 E-U 7 

48700000.E-07 

48600000.E-07 

4 85 0 O O O O o  F-0 7 

48400030.F-0 7 

4 8  7 00 000 F-0 7 

1373400 7 E-07 

137302 32oE-C;7 

13726456.E-07 

1 3  7 2267 9 E-O 7 

13718901  .E-87 

13715122.E-07 

1 3 7 1 1 3 /! 2 - E -n 7 

117C7561.E-07 

13703779 E-0 7 

13699996.E-07 

136962 12  E-07 

13692427.E-07 

1368864  1 E-0 7 

1 36 8 48 5 4  E-0 7 

1168  1066 E-O 7 

f 3677277.E-07 

1 36 7348 7 F-0 7 

11669696.E-C7 

13 734007. F-07 

1 3 7 3 0 1  54.E-07 

13  72 62 6 3 E-0 7 

13722402  E-07 

1 3 7 1 8 5 03. E- 0 7 

1?714590oE-C7 

l 3 7 1 n k ~ i  , ~ - - r ) 7  

137067  17. F-97 

1 ? 7 0 2 7 5 7 0 € - 0 7  

11698782.F-07 

13  6C4792 E-07  

13  6007 8 6  E-O 7 

13686763.E-07 

13682726.E-07 

1 3  67  86 72 E-O 7 

13 674602 E-O 7 

1367@516oF-O7 

1 Q 6 6 6 4  1 4 F-r) 7 

0 0 3 0 0 0 @ 0 ~ E - 9 9  

56809268.F-11 

1245 78 50  E-10 

2 0 18  54'70 F-10 

2 9 CJ 1 1 9 1 1 F - 1 O 

38790805.E-10 

49hh9377.E-10 

61575649.F-IO 

7h56351O.F-10 

88621017.F-10 

10368905.E-09 

11C;861630 F-09 

137212860€-09  

15552456.E-09 

17501698.E-09 

13 5 6  18  1 2  E-09 

21732:03.F-09 

74O15078.F-q9 
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TABLE FOUR ( C O N T I N U E D )  

18  29 

19 30 

20  3 1  

2 1  32  

22 33 

23 3 4  

2 4  35 

25 3 6  

2 6  37 

27  38 

28 3 9  

29  4 0  

30 4 1  

3 1  42  

32  43  

33 44 

34 4 5  

35 4 6  

36  4 7  

37  4 a  

38 49  

39 5 0  

40 5 1  

482O00000E-O7 

48 1000OO.E-0 7 

48000000. F-0 7 

4 7 9  00 000 F-0 7 

47800000.F-07 

47700000.E-07 

47600000.E-0 7 

47500000.E-07 

47400000.E-07 

4 7  3OOOOO E-O 7 

47200OOO.E-07 

471000uu. t -u  I 

4700000O.E*0 7 

469000OO.E-07 
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START 
READ J(1) TO J ( l l )  

I 
fh  

D ~ Y  (N 

- D  
STOP 

Y ( N + l )  = Y(N) + 

+ D3Y(N) + 
- ~ DlY(N) + D2Y(N) - PUNCH M, N, 

X(N), Y(N): D~Y(N) + D ~ Y ( N )  



ll 
DO 2& 

J - 5 , U  

* DSY(N)-O.C DLY(N) = 0.C 

I -  I 

< D3Y( J )  = D2Y( 
a - D2Y( J-1) 

I I 

X ( N + l )  = 

X(N) + H 

F i g m e  1. Flow Diagram of Fortran I1 Program for Computing Extrapolatj 
Using Newton's Extrapolation Equation. 
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DO 

J = 3 , 1 l  

D 2 Y ( J )  = D l Y ( J )  

- DI.Y(J-~) 

1 - 

< - 
- 1  

A L /  

4 

D l Y ( N )  = D2Y(N)  - D l Y ( N )  
L 

r 

Y ( N )  - Y ( N - 1 )  - DlY( N-1) 

D 3 Y ( N )  - D 2 Y ( N )  

- D2Y(N-1)  

I 

< 

flS 

p7-3 
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Figure 3-a. Sine x in Five Degree Increments. 
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Figure 3-b.  Percent Error Versus Number of Extrapolations. 
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Figure 4 - a .  Sine x i n  One Degree Increments. 
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Figure 4 - b .  Percent Error  Versus Number of Extrapolat ions.  
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Figure 5-a. Sine X i n  15 Minute Increments. 
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Figure 5-b. Percent Error  Versus Number of Extrapolat ions.  
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Figure 6. Extrapolations Error for Log Table. 
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Figure 7. Extrapolation Error for Interest Table. 
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Figure 9-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 9-b. Percent Error Versus Number of Extrapolations. 
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Figure 10-b. Percent Error Versus Number of Extrapolations. 
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Figure 11-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 11-b. Percent Error Versus Number of Extrapolations. 
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Figure 12-a. Arctangent X as a Function of X With Extrapolations from 

Data Increments of 1.0. 
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Figure 12-b. Percent Error Versus Number of Extrapolations. 
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Figure 13-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 13-b. Percent Error Versus Number of Extrapolations. 
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Figure 14-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 14-b. Percent Error Versus Number of Extrapolations. 
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Figure 15-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. . 
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Figure 15-b. Percent Error Versus Number of Extrapolations. 
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Figure 16-a. Arctangent X-as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 16-b. Percent Error Versus Number of Extrapolations. 
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Figure 17-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 17-b. Percent Error Versus Number of Extrapolations. 



63 

n 
v) u 
rl 
E 
3 

X 
u 
E 
aJ 
M 
E 
(d 
JJ 
0 

W 

2 

105 

1.0 

0.5 

000 

-005 

-1.0 

-105 

12 10 8 6 h 2 0 -2 4 -6 -8 -10 -12 
X (Units) 

Figure 18-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 19-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 19-b. Percent Error Versus Number of Extrapolations. 
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Figure 20-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 20-b. Percent Error Versus Number of Extrapolations. 
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Figure 21-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 

Figure 21-b. Percent Error Versus Number of Extrapolations. 
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Figure 23-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 23-b. Percent Error Versus Number of Extrapolations. 
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Figure 24-a. Arctangent X as a Function of X With Extrapolations from 
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Figure 24-b. Percent Error Versus Number of Extrapolations. 
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Figure 25-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 1.0. 
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Figure 25-b. Percent Error Versus Number of Extrapolations. 
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Figure 26-a. Arctangent X as a Function of X With Extrapolations from 

Data Increments of 1.0. 
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Figure 26-b. Percent Error Versus Number of Extrapolations. 
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Figure 27-b. Percent Error Versus Number of Extrapolations. 
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Figure 29-b. Percent Error Versus Number of Extrapolations. 
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Figure 30-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 

10% 

n 1.0% 
U c aJ 
0 

&I 
0 
k 
&I 

0.1% 

0.01% 
0 5 10 15 20 25 3U 35 LO &s 59 55 !jc! 

Number of Extrapolations 
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Figure 31-a. Arctangent X as a Function of X With Extrapolations from 
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Figure 32-b. Percent Error vs Number of Extrapolations. 
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Figure 35-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 
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Figure 35-b. Percent Error vs Number of Extrapolations. 
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Figure 36-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 
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Figure 36-b. Percent Error vs Number of Extrapolations. 
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Data Increments of 0.1. 
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Figure 38-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 

Number of Extrapolations 

Figure 38-b. Percent Error vs Number of Extrapolations. 
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Figure 39-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 
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Figure 39-b. Percent Error vs Number of Extrapolations. 
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Figure 40-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 
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Figure 40-b. Percent Error vs Number of Extrapolations. 
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Figure 41-a. Arctangent X as a Function of X With Extrapolations from 
Data Increments of 0.1. 
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Figure 41-b. Percent Error vs Number of Extrapolations. 
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